CONSISTENT RELATIVE AND ABSOLUTE ORDER
OF MAGNITUDE MODELS

Abstract

The aim of this paper is to analyse under which conditions an Absolute Order of Magnitudes
and a Relative Order of Magnitudes model are consistent and to determine the constraints
that consistency implies. A graphical interpretation of the constraints is provided, bridging
the absolute qualitative labels of two quantities into their corresponding relative relation(s),
and conversely. The ROM relations are then characterized in the absolute world.

1. Introduction

Order-of-magnitude models are an essential piece among the theoretical tools available for
qualitative reasoning about physical systems [Travé-Massuyes et al.97], [Kalagnanam et al.
91], [Struss 88]. They aim at capturing order-of-magnitude commonsense inferences, such as
used in the engineering world. Order-of-magnitude knowledge may be of two types: absolute
or relative. The absolute order-of-magnitudes (AOM) are represented by a partition of R,
each element of the partition standing for a basic qualitative class. A general algebraic struc-
ture, called Qualitative Algebra or Q-algebra, was defined on this framework [Travé&Piera
89][Piera&Travé 89|, providing a mathematical structure which unifies sign algebra and in-
terval algebra through a continuum of qualitative structures built from the rougher to the
finest partition of the real line. The most referenced order-of-magnitude Q-algebra parti-
tions the real line into 7 classes, corresponding to the labels: Negative Large(NL), Negative
Medium(NM), Negative Small(NS), Zero(0), Positive Small(PS), Positive Medium(PM) and
Positive Large(PL). Q-algebras and their algebraic properties have been extensively studied
[Missier et al.89],[Piera&Travé 90], [Missier 91], [Agell 98].

Order-of-magnitude knowledge may also be of relative type (ROM), in the sense that a
quantity is now qualified with respect to another quantity by means of a set of binary order-
of-magnitude relations. The seminal ROM model was the formal system FOG [Raiman91],
based on three basic relations, used to represent the intuitive concepts of "negligible with re-
spect to”(Ne), "close to” (Vo) and ” comparable to” (Co), and described by 32 intuition-based
inference rules. The ROM models that were proposed later improved FOG not only in the nec-
essary aspect of a rigorous formalisation, but also permitting the incorporation of quantitative
information when available and the control of the inference process, in order to obtain valid
results in the real world [Mavrovouniotis&Stephanopoulos87] and [Dague93al,[Dague93b].

The formal model ROM(K) [Dague93a] was devised first, as an extention of FOG by adding a
relation Di standing for ”distant from”. This addition provided the system with a nice sym-
metrical property and the ability to express gradual changes from one order-of-magnitude to
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another thanks to the existence of overlapping regions. [Dague93b] then showed with ROM(R)
how to transpose this system to R with a guarantee of soundness, solving hence the two above
mentioned problems: possible incorporation of quantitative information and control of the in-
ference process. ROM(R) subsumes the O(M) model by [Mavrovouniotis&Stephanopoulos87].

Although one type of reasoning, based on AOM or ROM, might be better suited to a given
application domain, it is generally the case that both are necessary to capture all the relevant
information. This is why it would be most useful to bridge AOM and ROM. Few attempts
have been made though. [Sdnchez et al.96] proposed a mixed model but their ROM relations,
defined with respect to the AOM labels, do not provide a complete interpretation in R.
[Gasca98| presented an operational system including both AOM and ROM relations based
on interval constraint propagation. However, it missed a rigorous formalisation assuring
consistency between AOM and ROM relations.

The aim of this paper is to analyse under which conditions consistency between AOM and
ROM models can hold and to determine the constraints that it would imply. Consequently,
the ROM relations would then be characterizable in the AOM world. Conversely, a pair of
quantities described by AOM labels could be related by the corresponding ROM relation(s).

The paper is organised as follows. Section 2 presents the AOM and ROM models frameworks.
Section 3 provides the formulation of the problem approached in this paper. The constraints
implied by consistency are then outlined in sections 4 and 5. Section 6 provides a graphical
interpretation of the constraints and bridges the absolute qualitative labels of two quantities
into their corresponding relative relation(s). The ROM relations are then characterized in
the absolute world in section 7. Finally, section 8 discusses the work and outlines several
conclusions and lines for future work.

2. AOM and ROM models

2.1. Absolute OM models

The AOM models rely on a partition of R which defines the quantity space S7, each element
of the partition standing for a basic qualitative class to which a label is associated. The
partition is defined by a set of real landmarks including 0 and generates the Universe of
Description of the AOM model. It is referred to as an absolute partition. The complete
universe of description is the set S

S=S U{[X,Y]|X,Y €5 — {0} and X <Y}

where X <Y means = < y Vz,€ X,Vy € Y, and the label [X,Y] is defined as the smallest
interval of the real line, with respect to the inclusion, that contains X and Y.

In the following, we restrict ourselves to symmetrical absolute partitions, i.e. such that [y is
a positive landmark if and only if —[; is a negative landmark as well. The symmetrical AOM
model with n positive (negative) qualitative labels is denoted by OM(n) and it is referred as
the AOM model of granularity n. The set of positive landmarks is denoted by L.

For instance, the OM(5) model is based on the following set of landmarks:
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{_57 _57 —a, =7, 07 v, &, 67 5}7

with corresponding labels: NVL =|oco, —4] (Negative Very Large); NL = | — §,—3]; NM =
] —B,—a]; NS =] — a,—9]; NVS =] — 4,0[ (Negative Very Small); [0]={0}; PVS =]0,~(;
PS=[~,a[, PM=|a, [, PL=[3, §[, PVL=[4, +o0] .

The resulting absolute partition is the following:

NVL N NM NS NVS PVS PS PM PL PVL
-0 —f -a -y 0 7 o g )

Figure 1: The OM(5) absolute partition

Definition 1.  Consider a non empty set S (Universe of Description) on which we define a
qualitative equality & and two internal operations, denoted & and &, which are compatible
with ~ and are both Q-associative, Q-commutative, and such that ® is distributive with

respect to @. Then (S5, ~, @, ®) is defined as a Q-algebra [Travé&Piera 89].

The operators & and ® are defined as the qualitative functions associated to the real sum
and product, guarantying valid results in the real world [Missier91]. Q-algebras and their
algebraic properties have been extensively studied [Missier et al.89],[Piera& Travé 90], [Missier
91], [Agell 98].

2.2 Relative OM models

ROM models are based on the definition of a set of binary relations r; which are invariant
by homothety, i.e. Ar;B only depends on the quotient A/B, the axiomatics of which are
described by a set of rules. The first ROM model FOG [Raiman91] was based on three
relations, "negligible with respect to”(Ne), "close to”(Vo) and ”comparable to”(Co, in the
sense of "the same sign and order of magnitude as”), and included 32 inference rules which
were proved to be true when giving the relations an interpretation in the field of real numbers

R of N.S.A. (Non Standard Analysis).

The ROM models that were proposed later improved FOG not only in the necessary aspect
of a rigorous formalisation, but also permitting the incorporation of quantitative information
when available and the control of the inference process, in order to obtain valid results in the
real world.

The relations underlying these models, in particular ROM(K) and its interpretation in R
ROM(R), are now presented in more details.

The formal model ROM(K) [Dague93a] was proposed as an extension of FOG by adding
a relation Di standing for "distant from”. The four binary relations Ne, Vo, Co, Di, are
defined by means of 15 axioms, which provide about 45 inference rules [Dague93al. ROM(K)
has a nice symmetrical property and the ability to express gradual changes from one order-
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of-magnitude to another thanks to the existence of overlapping regions when interpreted in

N.S.A. (cf. Figure 2).

[Dague93b] then showed how to transpose ROM(K) to R with a guarantee of soundness,
resulting in the system ROM(R). ROM(R) permits the incorporation of quantitative infor-
mation and obtains sound results while maintaining the semantics of the inference paths in
terms of the four symbolic relations of ROM(K).

The following relations are defined in R, parametrized by a positive real k:

Definition 2 [Dague93b|.

Negligibility at order k: Given two real numbers x and y, then x is negligible at order k
or k-negligible with respect to y, xNyy, if |z| < k|y|.

Proximity at order k: Given two real numbers z and y, then z is close at order k to

Distance at order k: Given two real numbers x and y, then z is distant at order k from

Note that P can be interpreted in term of Ny as follows:

rPry if | — y| < k- max{|z|, |y|} is equivalent to |z — y| Ny max{|z|, |y|}, i.e. (x =y =0) or
— 1
(y # 0 and =yl < k), or equivalently, (x =y =0)or (y #0and 1 -k < ul < —).
(7], o) 7

Dague (1993b) matches the above relations to ROM(K) relations using two parameters kq
and ky in the following way:

Vo < Py,
Co < Pi_p,
Ne <+ Ny,
Di ¢ Dy,
Note that zDiy is equivalent to (r = y = 0) or (z # y and & > k), ie.,
max {|z|, |y[}

(x/y < 1—"Fky) or (z/y > 1/(1 — k2)) or y = 0. Consequently, Diy is equivalent to
[(z —y)Cox] or [(y — z) Coyl.

A first group of ROM(K) axioms is satisfied for any k; and k. A second group requires the

following constraint:
0 <k <kgy<1/2.

The remaining axioms cannot be satisfied in R. For these, [Dague93b| proposes to calculate
the order-of-magnitude precision loss of the conclusion in the worst case.

Figure 2 illustrates the interpretation of ROM(K) in N.S.A. and the matching with ROM(R),
together with the interpretation in R.
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Figure 2: Relations ROM(K) and ROM(R)

In conclusion, ROM(R) has two degrees of freedom, in the form of two parameters ky and k2,
which define a relative partition of the real line, as shown in Figure 2. This partition concerns
the quotients of quantities, for instance, = Ney if and only if z/y belongs to [—k1, k1].

This partition is symmetrical with respect to 0, for two quantities of the same sign on the right
side of 0 and of opposite signs on the left. Restricting ourselves to the right side of 0, it is also
symmetrical in a qualitative sense with respect to 1, as shown in Figure 2. Consequently, the
whole partition is fully characterized by the interval [0, 1], which is in turn fully characterized

by the set of relative landmarks Q* = {ky, k2,1 — ko, 1 — k1 }.
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3. AOM and ROM models consistency problem formulation

The aim of this paper is to analyse under which conditions AOM and ROM models can be
consistent and to determine the constraints that it would imply on their degrees of freedom.

The AOM models that we consider are the ones presented in section 2.1. Their degrees of
freedom include the number of landmarks defining the absolute partition and the landmark
values themselves.

Concerning the ROM models, we do consider the ROM(R) model presented in section 2.2,
for several reasons. The main reason is that it is fully interpretable in R, which is a necessary
condition to obtain a gateway with AOM models which are themselves fully interpretable in
R. The second reason is that it is the most general ROM model that satisfies the previous
condition. The degrees of freedom of ROM(R) are the values of the parameters ky and k.
Note that the number of landmarks of the relative partition depends on these two values.

Given two quantities, which are qualified in the absolute world, we want to be able to provide
the corresponding ROM relations which link them. This problem will be referred as the
AOM — ROM problem. Conversely, given two quantities known to be related by a given
ROM relation, we want to be able to give their possible qualifications in terms of absolute
qualitative labels. Finally, this problem will be referred as the ROM — AOM problem.

Labels in OM(n) are represented by intervals of R and ROM relations in ROM(R) are defined

via quotients of real numbers. Then, from the fact that:

Iy 1
v € [,y € [l3,l4] = Te [—17 —2]
Y la" 13
when 0 ¢ [l3,14] and I; > 0 Vi, it is necessary that the quotients of the landmarks of the
absolute model coincide with the landmarks of the relative partition of ROM(R).

Definition 3: (Consistency Property) If the quotients between the landmarks of an absolute
model OM(n) coincide with the landmarks of a relative partition of ROM(R), then the OM(n)

and the ROM(R) models are said to be consistent.

We want to determine the constraints linking the landmarks of the absolute and relative
partitions which guaranty the consistency property. Having obtained this result, it will be
possible to characterize the ROM(R) relations in the AOM world, and conversely.

4. Minimal granularity to match OM(») and ROM(R)

The first necessary condition for guarantying the consistency property concerns the number

of landmarks of the AOM model OM(n).

In order to maintain the maximum power to ROM(R), let us consider the case in which
k1 < ky < 1/2, resulting in four landmarks in the interval [0,1] of the corresponding relative
partition: 0 < ky < k2 < 1—ky <1—Fky < 1. Let us call this case the full ROM(R ), noted
F-ROM(R).



Proposition 1. The minimum granularity to match OM(n) and ROM(R) is n = 5.

Proof: the case OM(2) is trivially unconsistent.

For OM(3), the positive landmarks o and 3, with a < 3, give the quotients: {0, %, 1, é},

e!
and only one of them is less than 1. Therefore, there is no OM(3) model which can be
consistent with any F-ROM(R).

In an OM(4) the positive landmarks are v, and g, with v < a < 3, that give the set of
quotients:

There are two possible arrangements:

0<1<g<1<1<g<ﬁ<§ when o <+/B7y
BB« Y oa oy

0< 2221228 Ghen o>V
pgoa” p a” v

In both cases there are at most three quotients less than 1, and again the consistency of
OM(4) and F-ROM(R) is not possible.
Let us now consider an OM(5), defined by the landmarks:

< P<-a<—9<0<y<a<f<d

The set of positive landmarks is: L = {7, a,,d}. There are twelve quotients different from
0 and 1, and six of them are in the interval |0,1[, which are given by the set of non-ordered
quotients:

Therefore, OM(5) is the minimal AOM model for which the consistency with F-ROM(R) is
possible.

5. Matching between OM(5) and F-ROM(R)

This section is concerned with the determination of the constraints that must hold to turn
OM(5) consistent with F-ROM(R). The first issue is to guaranty the required number of
relative landmarks, i.e. card(Q)= card(@Q*); the second is to realise the formal matching
between the relative landmarks and their expression in terms of the absolute landmarks, i.e.

Q=Q"

5.1 Cardinality
This section outlines the conditions to guaranty card(Q)=card(Q*)=4.

Since card(Q) is potentially greater than 4, the following condition is applied iteratively until
card(Q)=4:



x
;z—, for some z,y,z,t € L ={v,a,3,0} (1)
Let us hence consider — = T =g or equivalently * = qy,z = ¢t, and, without loss of

generality, ¢ > 1.
Notation: By convention, the ordered 4-tuple (ay, a2, as,aq) is used for a1 < az < az < aq.

The only 4-tuples (v, , 3,6) that satisfy condition (1) are given by the following 6 cases:

Case 1) (7,a,8,8) = (7,47, ¢*7,9)
Case 2) (v,a,0,8) = (7,97, 6,¢*7)
Case 3) (v,a,83,6) = (v,97,8,498)
Case 4) (v,0,8,8) = (v, a,q7,¢*7)
Case 5) (v,a,8,6) = (v,a,¢7,qa)

Case 6) (v,a,8,8) = (7,0, qa, ¢*a)

After some calculations, all these cases give five quotients in @), except for the cases 3) and
5) that give directly four.

Case 3)

The quotients in case 3) are Q = ¢ —, q%}, or, in terms of o, and ¢: Q =

1 « a o«
{E’ B B E}'

The landmarks of L are, again in terms of a, § and ¢: L = {g,a,ﬁ,qﬁ}. This can be
q

B qp’

interpreted as the situation in which there exists ¢ > 1 such that all the very small numbers
multiplied by ¢ are, at most, small, and all the very large numbers divided by ¢ are, at least,
large.

There are two possible orderings of Q:

5.1) (& o a 1)
NGB 9B B g

o a 1 «
2 (55 05 1 5)
Case 5)

1
The quotients in case 5) are @) = {Py Je }, or, in terms of o, and ¢: @Q =
o’ q qa’ gy
1 /
{ﬁ, -, 2i, 2} The landmarks of L are, again in terms of o, f and ¢q: L = {é,a,ﬂ,qa}.
g’ q qta q
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This can be interpreted as the situation in which there exists ¢ > 1 such that all the very
small numbers multiplied by ¢ are, at the most, medium, and, all the very large numbers
divided by ¢ are, at least, medium.

There are two possible orderings of Q:

1
) (v )

¢ a
1
5.2) (i’ @
a’ q’ p’
Let us study the cases 1),2),4) and 6) in which there are still five quotients in Q. Condition
(1) is applied again.

Q\@ mm

. X z .
Let us hence consider — = ;=P for some z,y,z,t € L, or equivalently = = py, z = pt, and,

y
without loss of generality, p > 1.

Case 1)
In the case 1), the absolute landmarks are (v, a, 3,8) = (v, ¢V, ¢*7,d) and five quotients less

than 1 result:
_ 1 11 7 22

By imposing condition (1) one more time, we obtain 6 cases:

1.1) (v, a,8,0) = (v,p7,0°7,9)
1.2) (v,a,8,9) = (v,p7,4°7, p*7)
1.3) (v,a,8,9) = (7,7, 4*7, Pg*7)
1.4) (v,a,8,8) = (v, 47,7, P*7)
1.5) (v, a,B,0) = (v,qv.p7,Pq7)
1.6) (v, B,0) = (7,97 a7, P*q7)

The case 1.1) is a deadlock case, since (v, p7y,p*~,d) is structurally equal to the initial
(7,97, 4%7,9). Cases 1.2),1.3),1.5) and 1.6) give only three quotients and can be discarded.
Hence,the only remaining case is 1.4), that gives exactly four quotients.

By making equal the expression of the absolute landmarks in case 1) and case 1.4) (7, a7, 4%, 5) =
(v, 47, Py, p*7), we obtain p = ¢*. Hence the case 1.4) corresponds to the absolute land-

a
marks (v, qv,¢*7,q*y), or in terms of o, L = (—,a,qa,q3a> and the set of quotients is
q

11 1 1
Q:{_7_t7_7_}'
g ¢ ¢

The following results are obtained by studying the cases 2),4) and 6) in an analogous way:
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Case 2)

« 1 1 1 1
L= (’77057675) = (77(]’77(]\/6’77(]27) = (Eaav\/gavqa> ) Q = {67—7_27—}'

Case 4)
L=(y,0,3,0) = (v, /av. a7, ) = (

o

11 1
\/(—]7047\/6047%/60/)7 Q — {—7§777—}'

Case 6)

«

1
L=(y,e,0,0) = (v,*7, 7. ¢*y) = <—2,a,qa,q2a> , Q= { : —}.
q @ ¢ ¢4 q

In summary, there are eight cases that allow one to establish a bijection between ) and Q*.
These are summarized in Table 1.

landmarks of OM(5) quotients less than 1
Lz(v,a,ﬁj) Q:(kl,kQ,l—kz,l—kl)
« « a o 1
L (3.1 -, Q, 67 QB S5 aY a0 o
(3.1) (q ) (qzﬁ e f q)
e a o« e
II. (3.2 — O, 67 QB 20 0% v o
(32) (qﬁ ) (q;ﬁ a8 6(1 5)
1 «
III. (5.1 —,a, 3, qo —_ -, —, =
(51) <g ) <q;a e gﬁ)
1
IV. (5.2 — —_ =, =, —
Vv (5 ) (q7a767qa) (QQOL/’ (]7 a’ qa)
! 1 1 1 1
V. (case 1 —,a,qo, ¢ o —, =, =, —
( ) ([ eae.a'e) (777
! 1 1 1 1
VI. (case 2 —,a,\/qa, qa —-, —, -, —
( ) (520 Ve aa) (22 i’ a \/6)
VIL (case d) | ("= 0, Va0, avd0) | (g~ )
- (case < y O qa, g/ qa 9 s T
V4 /1 94 1
o 1 1 1 1
VIII. (case 6 —, o, qo, (o —, =, =, —
( ) 72 @ 4@, g Q) el s i

Table 1: Admissible cases for consistency

5.2 Formal matching

For each admissible case of table 1, it remains to impose the formal matching between the
relative landmarks and their expression in terms of the absolute landmarks, i.e. Q = Q*.

Let us consider case I, the other ones being dealt with in a similar way. We want the condition
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Q= Q" ie.
o o o 1

(ﬁ? %7 Ev q):(k17k271_k271_k1)

It 1s hence enough to solve the following system:

2 2
The unique positive solution for ¢ is ¢ = v/2, and then 3 = ( +2\/_> «a. The landmarks of

OM(5) are:

The quotients less than 1 are:

qzﬁ 2 Y 2 q/@ bl 2

|

o 2—\/§ o o 1 1
k —2-V2,1—k =-=—
(1 = ﬂ)

In case IV, the unique solution for ¢ is the solution of the equation ¢*> — ¢> +1 = 0, that is,

1 1 1
q ~ 1.32, which is not possible because ky = — ~ — ~ 0.76 £ —.
g 1.32 2

In the cases V, VI, VII and VIII, the corresponding system of equations has no solution.

Hence, only case I, II and III have solutions and are summarized in the following table! :

1 In case II, q is obtained from the equation q3 - 2(]2 4+ q— 1 = 0 and its real solution is ¢ =

2 13/25—3v69 1 3/254 369
§ + § f + § % ~ 1.75487. In case III, g is obtained from the equation q3 —

3/27 —3V69  2/9+ V69

1
3(]2 + 2q — 1 = 0 and its real solutionis ¢ = 1 + sV 7= + 13

~ 2.32472
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landmarks of OM(5) quotients less than 1 q.p
Lz(’y,a,ﬂj) Q:(kl,kz,l—kg,l—kl)

(oz a o o 1

I' Ea «, 67 qg) (ﬁ7 ﬁ7 57 g) q:\/\i/_
2 2
f= (e
« « a 1 «
II. (57 a, 67 QB) (%7 %7 §7 E) q= 17502187
8=
qg—1
B a8 aa s 1B e ~
I1L (50 6:q0) (e o’ 3 4= 2.32472

B=(qg—1)a)

Table 2: Cases for consistency

The conclusion of the above analysis is that consistency between OM(5) and F-ROM(R) is
possible, although it is highly constrainted. Indeed, only one degree of freedom remains out

of four for the AOM model, the F-ROM(R) model resulting fully determined.

6. Bridging AOM and ROM models

This section is concerned with the AOM — ROM and the ROM — AOM problems, as defined

in section 3. These correspondences are easily obtained graphically.

Figures 3a, 3b and 3¢ show simultaneously the landmarks of the absolute model and the
landmarks of the relative partition in cases I, IT and III respectively.

The absolute landmarks are reported on the axes X and Y , and the relative ones are given
by the straight lines of equations T k,ke€{ki, ko, 1 — ko1 — Ky}
)

The ROM(R) relations Ne, Co, Vo and Di all lie between the Y axis and the straight line
x = y. Each of them corresponds to a sector indicated by a double arrow between a pair of
lines.

Formally, each of the relations Ne, Co, Vo and Di, corresponds to the region of the plane
{(z,y) |z >0,y >0,z <y, such that Ry}, where R is any of the four relations.

In the following the four relations are characterized in terms of the corresponding region and

a few examples of ROM — AOM and AOM — ROM correspondances are provided.
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Figure 3a: Case I
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6.1 Relation Ne

< kq), thus  Ne y when the point (z,y) lies in
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the region between the straight lines + = 0 and — = k4.
Y

Examples of correspondances:

1.1. Any very small number is negligible with respect to any very large number: Vz € VS,
Vy € VL: zNey

1.2. The numbers that are not very small can be negligible only with respect to some very
large numbers: x ¢VS, x Ney =y € VL.

6.2 Relation Vo

tVoy < (z=y=0)or (y #0and ﬁ < k), thus, for z <y, x Voy when the
max{(e], by =" :
point (z,y) lies in the region between the straight lines — =1 — %y and — = 1.

Y
Examples of correspondances:

2.1. In case I, any very small number is not Vo with respect to any medium, or large, or very
large number: =z €VS, zVoy =y €VSoryeS.

2.2. In case I, any small or medium number is not Vo with respect to any very large number.

2.3. In cases II and III, any very small or small number is not Vo with respect to any large,
or very large number.

6.3 Relation Co

tCoy <= (r=y=0)or (y#0and @ <1 —ky), thus, for z <y, x Coy when
maxel oy =™ T
the point (z,y) lies in the region between the straight lines — = ky and — = 1.
Yy )

Examples of correspondances:

3.1. Any very small number is not Co to any large or very large number.

3.2. Any small number is not Co to any very large number.

6.4 Relation Di

tDiy < (x =y =0) or (y # 0 and & > ko), thus, for + <y, x Diy when the
max{|z|, |y[}
point (z,y) lies in the region between the straight lines + = 0 and — = 1 — k».

Y
Examples of correspondances:

4.1. In case I, any very small or small number is distant from any large or very large number.
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4.2. In cases II and III, any very small number is distant from any medium or large or very
large number.

4.3. In cases II and III, any small or medium number is distant from any very large number.

7. Characterization of the ROM relations in the absolute world

The consistency conditions established in section 5 and summarized in table 2 allow us to
provide a characterization of the ROM(R) relations in terms of AOM concepts.

7.1 Negligibility

Proposition 2. =z is negligible with respect to y, x Ney, if and only if x =y = 0 or, in

the case y # 0, there exists a very large number M (M € PVL) such that the quotient r
Y

multiplied by M is a very small number (PVS).
o 2 -2

Proof: If xNey, and y # 0, i.e., E‘ < ki (remember that &y = 25 = 2 in case I,
) q
-1 -1
ki = ;L = q—z, q ~ 1.75487 in case I, and k; = 2ﬂ _ 1 5— in case III).
P q q q

e!
Then, in cases I and II, we obtain ¢f < 2y
qx

‘a

X [0
Yl e, MH <22
x Y q

. When this inequality is strict, there exists M

such that g8 < M <

M
Reciprocally, if there exists M > ¢f such that i

implying that x Ne y.

The proof in case III is analogous, by interchanging o and § g

k
Since x Ny is equivalent to (zl : .TL‘) Ney, by the above characterization of Ne, we obtain

the characterization of V.

Proposition 3. z is negligible at order k with respect to y, x Nyy, if and only if =y =0
ki =z
or, in the case y # 0, there exists a very large number M such that the quotient ?1 - —
Y

multiplied by M is a very small number.
ay . .
2 When —‘ = ¢f3, the number M needs to be large but not very large. Nevertheless, since g3 is

qr

precisely the landmark between large and very large numbers, this does not change the nature of the result.
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7.2 Proximity

From the relation between the concepts of proximity and negligibility given in section 3,
x Voy is equivalent to:

1. Cases I and II, &y = el

q*p
x
r=y=0)or (y Oandl—— —<7.
( ) or (y # s, ST @
which, in the case y # 0, is equivalent to:

Y o z o,
1——§—1f|:c|2|y|} and {1__§—1f|:v|§|y| .
T = ¢*f y ~ ¢*p

2. Case IlII, ky = i:

Pa
( 0) or (y # 0 and 1 — <)
T = y = an - i - .
5 y o0
which, in the case y # 0, is equivalent to:

l—ggéif|x|2|y|} and [1—£§2iiflfc|§|yl}-
T T ¢a y g«

The following proposition gives a characterization for the relation Vo:

Proposition 4.  When z,y # 0, let z be the quotient in the set { — g such that |z| < 1.
Yy x
Then, = Voy if and only if there exists a very large number M such that M multiplied by

(1 — 2) is a very small number.

Proof: Let us first consider cases I and II. Let us suppose |z| > |y|, i.e., z = Y If there exists
T

M > qf such that M (1 — g) < g, then ¢f (1 — g) < g, and therefore, 1 — y < ;L, ie,
x/ o q x/ o q r = ¢p
xVoy.
. . y _ @ . L y\ o
Reciprocally, if z Voy, then 1—= < 2—5 and, when this inequality is strict, g3 (1 — —) < —.
x q z q

If |z| < |yl, the proof is analogous.
In case I11, let us suppose |z| > |y, i.e., 2 = Y I there exists M > ga such that M (1 — g) <
T

T
a a
3 When 1 — Y = ——, the product M (1 - g) = qf (1 - g) = — is small and not very small.
r P x x q
[0
Nevertheless, since — is precisely the landmark between very small and small numbers, this does not change

the nature of the result.
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) < é, and therefore, 1 — y < 2£

q r T ¢Pa
Rec: v, 3¢ y _ B - N y\ B
eciprocally, if z Voy, then 1 — " < q2—a’ and, when this inequality is strict, go (1 — - < E

LY
X

g, then ga ( , ..e, z Voy.

If |z| < |yl, the proof is analogous g

The proximity at order k relation, x Py, is equivalent to:

— = 0) or and Tyl
=y =0 or (u 40 i Bty <k)

Hence, from Proposition 3 and 4 the following result is straightforward:

Proposition 5. z is close at order k to y, x Py, when z = y = 0 or, in the case y # 0,
k x —

there exists a very large number M such that the quotient -L. i multiplied by
ko max{[z], [y[}

M 1is a very small number.

7.3 Comparability

a
The comparability relation Co is a particular case of P, with k=1—ky, =1 - —

qb

Proposition 6. Let us assume z,y # 0 and let z be the quotient in the set {5, %} such
that |z| < 1. Then,
I) In case I, z Coy if and only if there exists a large number M such that M multiplied by

(1 — 2) is a small or a very small number.

IT) In case II, 2 Coy if and only if there exists a medium number M such that M multiplied
by (1 — z) is a very small number.

ITIT) In case III, when z Coy there exists a medium number M such that M multiplied by
(1 — 2) is a small or very small number.

Proof:

Case I) If |z| > |y|,i.e. 2 = g, the relation x Co y is equivalent to: 1-Y <1-ky = 1—%,
x x q
and, taking into account that 1 — e % this is equivalent to: [ (1 — g) < a.
q x
If x Coy, it 1s enough to consider M = 3.
Reciprocally, if M is a large number such that M (1 — g) < a, then (1 — g) <a
x x

because M > (5.
The proof in the case |z| < |y| is analogous.

Case IT) If |z| > |y|,i.e. 2 = g, the relation x Co y is equivalent to: 1-4 <1-ky = 1—%,
T T q
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o 1 o
and, taking into account that 1 — _5 = — this is equivalent to: « (1 — —) < —.

q q q
If x Coy, it is enough to consider M = a.

Reciprocally, if M is a medium number such that M (1 — %) < %, then o (1 — %) <
¢ because M > a.
r](_ihe proof in the case |z| < |y| is analogous.
Case III) If |z| > |y|, i.e. z = %, x Coy is equivalent to: 1 — % <1—Fky = q%’ and this is
equivalent to: qu (1 — g) < a. It is enough to take M = @ i > a.
p x pooq-1
The proof in the case |z| < |y| is analogous g
Incase I, 1 — ky = 1 — % = 2 — /2 is the quotient between the length of the interval
corresponding to [PVS,PS(]] and the length of the interval [PVS,PM].
Incasell, 1—ky =1— e _ ! is the quotient between the length of the interval corresponding

q q
to PVS and the length of the interval [PVS,PS]. This is also the quotient between the length
of the interval corresponding to [PVS,PM] and the length of the interval [PVS,PL].

1
In case III, 1—k3 = 1—— = — is the quotient between the length of the interval corresponding
aq

q
to PVS and the length of the interval [PVS,PS]. This is also the quotient between the length
of the interval corresponding to [PVS,PM] and the length of the interval [PVS,PL].

7.4 Distance

Proposition 7.

i) If & # ky, then z Diy if and only if there exists some real number M neither
max{|z|, |y|}
large nor very large such that M multiplied by the quotient & is not very small.
max{|z|, ly[}
i) If & = ko, then condition i) is only a sufficient condition.
max{|z|, |y|}
1
Proof: In cases I and II, ky = g, and in case III, k = —. Let us give the proof in cases [
q
and II, the one in case III being analogous.
. : M(z —y)|
i) Let us suppose that there exists M such that |M| < f and ————= > a/q, then
max{|z|, |y|}

Bz —y)|

[z —y] a . :
_ > —., le., xDiy.
max{|z|, |y|} s

> a/q, therefore ———— >
max{|z[, [y[} ~ ¢f
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amax{|z], |y|}

qlz —y|

Reciprocally, if z Diy, it suffices to take M such that

< |M| < p.

B

uyf ——= = —
V(L 2P

, the proof is analogous to i) g

k x —
Since xDyy is equivalent to . | yl

——————— < ko, from proposition 7 the following result
ko max{|z], |ly[}

is straightforward:

Proposition 8.

1) If & # ko, then #Dyy if and only if there exists some real number M neither
max{|z|, |y[}

ky  lz—yl

————=—— is not very
ko max{|z], |y[}

large nor very large such that M multiplied by the quotient

small.
iy 1 12— Yl

——————— = ky, then condition i) is only a sufficient condition.
max{|z|, |y|}

8. Conclusions

The aim of this paper is to analyse under which conditions an AOM and a ROM model are
consistent and to determine the constraints that consistency implies. A graphical interpreta-
tion of the constraints is provided, bridging the absolute qualitative labels of two quantities
into their corresponding relative relation(s), and conversely. The ROM relations are then
characterized in the absolute world.

The study has been performed with a general AOM model OM(n) one one hand and the
most general interpretable in R ROM model, F-ROM(R). The obtained results show that

consistency is highly constrained. Indeed, only one degree of freedom remains out of four for

the AOM model, the F-ROM(R) model resulting fully determined.

It is our opinion that the definition of consistency that has been adopted is the most intuitive
and the one that guarantees the best correspondances between the absolute and the relative
world, hence providing the best determined characterization of ROM(R) relations in terms
of absolute concepts. Indeed, consistency requires that the quotients between the landmarks
of the AOM model coincide with the landmarks of F-ROM(R). This requires first, the
number of quotient landmarks to be 4 and second, the formal matching of their corresponding
expressions. The first condition guarantees full expressivity in the relative world and implies
an AOM model OM(n) of granularity n superior to 5. The second condition provides the
most deterministic AOM — ROM and ROM — AOM correspondances, and hence the most
deterministic characterization of ROM relations in the absolute world.

However, the problem could be formulated with a weaker definition of consistency. Preserving
full expressivity in the relative world with a OM(5) absolute model, a weak- consitency
property could be defined by relaxing the second condition, leading to weaker correspondances
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and characterizations. Another option could be to consider a higher granularity AOM model,
but at the price of poorer semantics for the absolute labels.

Both two conditions could be relaxed as well. A special case would be to consider Mavrovi-
ouniotis and Stephanopoulos (1997) O(M) model instead of F- ROM(R). O(M) is a particular
case of ROM(R) with ky = k3, therefore in this model there are only two quotients less than
1: ky and 1 — kq. In this case, an OM(4) is sufficient to construct the matching. With the

absolute landmarks v, and [, only two quotients less than 1 are obtained if and only if

v o« a?

— = —, Le., a is the geometric mean of v and 3 (v = —).
a f J&;
a? e’ a? a
By imposing that the addition of the two quotients @ and B is 1, the equation @—I— g—l =0

gives two cases:

1
I) B = qa, with ¢ = \/g;_ .

Vh—1
TR

IT) B = qa, with ¢ =

A detailled study of these cases could be performed in a way similar to sections 5, 6 and 7.
However, one should notice that the absolute landmark are also highly constrained by the
numeric value of gq.

Finally, we believe that our study could be advanteageously completed by reinterpreting, in
the case of consistency, the ROM(K) axioms in the absolute world. This would exhibit the
semantics of these rules in the absolute world.
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